# Project Notes:

#### Project Title: Development of a Modular Below-Elbow Prosthesis with Bidirectional Signaling for Children Name: Travis Tran

**<u>Note Well:</u>** There are NO SHORT-cuts to reading journal articles and taking notes from them. Comprehension is paramount. You will most likely need to read it several times so set aside enough time in your schedule.

#### **Contents:**

| Knowledge Gaps:                                                                                                                                  | 1         |
|--------------------------------------------------------------------------------------------------------------------------------------------------|-----------|
| Literature Search Parameters:                                                                                                                    | 2         |
| Article #1 Notes: "Hands-On Experiences With Assistive Technologies for People With Intellectual Disabilities: Opportunities and Challenges"     | 3         |
| Article #2 Notes: "Bayesian Multiobjective Optimisation With Mixed Analytical and Black-Box Functions: Application to Tissue Engineering"        | 5         |
| Article #3 Notes: "Mind-Controlled Prosthetic Hands Grasp New Feats, Users can move individual fingers simply by thinking about it"              | 7         |
| Article #4 Notes: "Machine Learning Takes On Antibiotic Resistance"                                                                              | 9         |
| Article #5 Notes: "Printing of wirelessly rechargeable solid-state supercapacitors for sof smart contact lenses with continuous operations"      | ft,<br>12 |
| Article #6 Notes: "Pressure and Blood Flow Regulating System Inside an Orthopedic<br>Cast"                                                       | 15        |
| Article #7 Notes: "Artificial Intelligence Enables Real-Time and Intuitive Control of<br>Prostheses via Nerve Interface" 1                       | 17        |
| Article #8 Notes: Materials of Prosthetic Limbs 1                                                                                                | 19        |
| Article #9 Notes: "Comfort and function remain key factors in upper limb prosthetic abandonment: findings of a scoping review" 2                 | 20        |
| Article #10 Notes: "An Overview of the Developmental Process for the Modular<br>Prosthetic Limb"                                                 | 24        |
| Article #11 Notes: "Myoelectric Control Performance of Two Degree of Freedom<br>Hand-Wrist Prosthesis by Able-Bodied and Limb-Absent Subjects" 2 | 27        |
| Article #12 Notes: "A Method for 3-D Printing Patient-Specific Prosthetic Arms With High<br>Accuracy Shape and Size"                             | ו<br>29   |

| Article #13 Notes: "Age at First Prosthetic Fitting and Later Functional Outcome in<br>Children and Young Adults with Unilateral Congenital Below-Elbow Deficiency: A |    |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------|----|
| Cross-Sectional Study"                                                                                                                                                | 32 |
| Article #14 Notes: "A novel socket design for upper-limb prosthesis"                                                                                                  | 34 |
| Article #15 Notes: "The MANUS-HAND Dextrous Robotics Upper Limb Prosthesis:<br>Mechanical and Manipulation Aspects"                                                   | 37 |
| Article #16 Notes: "Mechanical Design of a Prosthetic Human Arm and its Dynamic Simulation"                                                                           | 40 |
| Article #17 Notes: CONTROL SYSTEM FOR A GRASPING DEVICE - EP 2 642 953 B1 (Patent)                                                                                    | 42 |
| Article #18 Notes: PROSTHETIC HAND SYSTEM - US 20200330246A1 (Patent)                                                                                                 | 45 |

#### Knowledge Gaps:

This list provides a brief overview of the major knowledge gaps for this project, how they were resolved and where to find the information.

| Knowledge Gap                  | Resolved By                                                                        | Information is<br>located      | Date resolved |
|--------------------------------|------------------------------------------------------------------------------------|--------------------------------|---------------|
| durability                     | Reading journal<br>article on different<br>materials for<br>prostheses             | Article #8                     | 10/3/22       |
| comfort                        | Reading journal<br>article on most<br>important criteria for<br>prosthetic comfort | Article #9,#14                 | 11/18/22      |
| sensory feedback               | Call with Mr. Loven<br>(11/19-11/20)                                               | Article #7, project<br>logbook | 11/20/22      |
| interchangeability/mo<br>dular | Reading journal<br>article on air pump<br>powered socket                           | Article #10,#14                | 11/17/22      |
| Mechanical<br>movement types   | Reading journal on<br>prostheses<br>movement types                                 | Article #15,16                 | 10/6/22       |

| Arduino inputs and<br>outputs (Backyard<br>Brains) | Call with Mr. Loven<br>(11/19-11/20, 12/4) | Project logbook | 12/4/22 |
|----------------------------------------------------|--------------------------------------------|-----------------|---------|
|                                                    |                                            |                 |         |

#### Literature Search Parameters:

These searches were performed between (8/17/2022) and 1/1/2023. List of keywords and databases used during this project.

| Database/search engine | Keywords                        | Summary of search          |
|------------------------|---------------------------------|----------------------------|
| Google scholar         | durability                      | Located in Article #8      |
| Google scholar         | comfort                         | Located in Article #9,#14  |
| IEEE                   | sensory feedback                | Located in Article #7      |
| Google Scholar         | interchangeability/modular      | Located in Article #10,#14 |
| Google scholar         | Mechanical movement types       | Located in Article #15,16  |
| Google patents         | Prosthesis patents on mechanics | Located in Article #17,18  |
|                        |                                 |                            |

# Article #1 Notes: "Hands-On Experiences With Assistive Technologies for People With Intellectual Disabilities: Opportunities and Challenges"

| Source Title                                              | "Hands-On Experiences With Assistive Technologies for People With<br>Intellectual Disabilities: Opportunities and Challenges"                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
|-----------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Source citation (APA<br>Format)                           | Torrado, J. C., Gomez, J., & Montoro, G. (2020, June 4). <i>Hands-on</i><br><i>experiences with assistive technologies for people with intellectual</i><br><i>disabilities: Opportunities and challenges. IEEE Access</i> , vol. 8, pp.<br>106408-106424. Retrieved August 17, 2022, from<br>https://ieeexplore.ieee.org/document/9108280                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| Original URL                                              | https://ieeexplore.ieee.org/document/9108280                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| Source type                                               | Journal Article                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| Keywords                                                  | Intellectual disabilities, assistive technologies for cognition                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| Summary of key<br>points + notes<br>(include methodology) | About one percent of the World's population suffer from intellectual disabilities (IDs) and it has been very difficult to develop assistive technologies for cognition (ACTs) for patients. Some of the challenges to the development of ACTs are finding and recruiting subjects, ethics, full trust and transparency with the patients and their families, communication, and validity. To adjust to these restraints, the developers of the ACTs would have to adjust their schedules with their patients', create publicly wearable/somewhat fashionable ACTs, comfort the patients, and make the tests appealing for them, and explain the conditions to the patients using precise language. The validity of the experiments is still questionable because one patient with an ID can be very different compared to a patient with the very same condition. |
| Research<br>Question/Problem/<br>Need                     | People with IDs are disproportionately treated compared to other well-known diseases/ailments.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |



| Important Figures                | Information         DOMAIN EXPERTS         Use and the system         Use and the |
|----------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| VOCAB: (w/definition)            | ID - intellectual disability<br>ACT - assistive technologies for cognition                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| Cited references to follow up on | <i>Diagnostic and Statistical Manual of Mental Disorders</i> , American Psychiatric Association, Philadelphia, PA, USA, 2013.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| Follow up Questions              | How can the validity of experiments like this be improved?<br>Can a baseline or scale be created from which to measure the<br>effectiveness of the ACTs, no matter the patient?<br>How can more patients be recruited?                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |

# Article #2 Notes: "Bayesian Multiobjective Optimisation With Mixed Analytical and Black-Box Functions: Application to Tissue Engineering"

| Source Title                                              | "Bayesian Multiobjective Optimisation With Mixed Analytical and<br>Black-Box Functions: Application to Tissue Engineering"                                                                                                                                                                                                                                                                                                                                                                        |
|-----------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Source citation (APA<br>Format)                           | Olofsson, S., Mehrian, M., Calandra, R., Geris, L., Deisenroth, M. P.,<br>& Misener, R. (2019). Bayesian Multiobjective Optimisation With<br>Mixed Analytical and Black-Box Functions: Application to Tissue<br>Engineering. <i>IEEE Transactions on Biomedical Engineering</i> , <i>66</i> (3),<br>727–739. https://doi.org/10.1109/TBME.2018.2855404                                                                                                                                            |
| Original URL                                              | https://ieeexplore.ieee.org/document/8413171                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| Source type                                               | Journal                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| Keywords                                                  | Multi-objective optimization, tissue engineering, cost/growth balance                                                                                                                                                                                                                                                                                                                                                                                                                             |
| Summary of key<br>points + notes<br>(include methodology) | Modern technological progress has given doctors and engineers<br>patient-specific genetic information, opening the possibility of<br>personalized healthcare and tissue growth or regeneration. When<br>tissue engineering, there is a tradeoff between neotissue growth and<br>the cost of the entire operation. A computer program/technique<br>called multi-objective optimization (MOO) has been developed and<br>can help to find the perfect tradeoff between neotissue growth and<br>cost. |
| Research<br>Question/Problem/<br>Need                     | How do we make tissue engineering both effective in quantity and cheap? What is the optimal balance between the two? How long can these organs be kept outside of a body after they are done developing?                                                                                                                                                                                                                                                                                          |



## Article #3 Notes: "Mind-Controlled Prosthetic Hands Grasp New Feats, Users can move individual fingers simply by thinking about it"

| Source Title                                              | "Mind-Controlled Prosthetic Hands Grasp New Feats"                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
|-----------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Source citation (APA<br>Format)                           | Hampson, M. (2022, April 6). Mind-Controlled Prosthetic Hands<br>Grasp New Feats, Users can move individual fingers simply by<br>thinking about it. Mind-Controlled Prosthetic Hands Grasp New<br>Feats. Retrieved August 23, 2022, from<br>https://spectrum.ieee.org/mind-controlled-prosthetic-hands-reach-ne<br>w-feats                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| Original URL                                              | https://spectrum.ieee.org/mind-controlled-prosthetic-hands-reach-ne<br>w-feats                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| Source type                                               | Article                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| Keywords                                                  | Prosthetics, AI                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Summary of key<br>points + notes<br>(include methodology) | In the past decade, many advancements have been made in the field<br>of mind-controlled artificial limbs, and now a breakthrough is allowing<br>prosthetic hands to be controlled with 98 percent accuracy. The new<br>advancement in assistive technology is based on an AI decoder that<br>interprets nerve signals at the terminus of an amputated limb and<br>gives users the ability to intuitively control a prosthetic hand with<br>individual wrist and finger movements. This new advancement adds<br>to how a machine can interact with the nervous system: interacting<br>with the brain, muscles, and now nerves. Interacting with nerves<br>allows the user more control over the prosthesis compared to<br>muscles and provides less risk than interacting directly with the brain.<br>Users can naturally think of the movement they desire and the<br>artificial limb will execute it with the help of the AI decoder at a speed<br>of 6 bits per second. This process is changing how effective and<br>risk-free prostheses can be and opening the door for a plethora of<br>assistive technologies to be made. Looking toward the future, the<br>nerve-prosthetic process contains an intraneural electrode<br>placement, an electrode that could give amputees a full array of<br>sensations such as touch, texture, vibration, and temperature. This<br>process could also be applied to other diseases such as epilepsy,<br>persistent pain, heart failure, and diabetes. |

| Research<br>Question/Problem/<br>Need | How can we improve current prosthetic technology using AI?                                                                                  |  |
|---------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------|--|
| Important Figures                     | For the the the coder prosthesis                                                                                                            |  |
| VOCAB: (w/definition)                 | N/A                                                                                                                                         |  |
| Cited references to follow up on      | Sources not listed                                                                                                                          |  |
| Follow up Questions                   | Can we make the prosthesis smaller to mimic an actual arm?<br>How can we make this more comfortable? Durable? Water resistant?<br>Wireless? |  |

#### Article #4 Notes: "Machine Learning Takes On Antibiotic Resistance"

| Source Title                                              | "Machine Learning Takes On Antibiotic Resistance"                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
|-----------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Source citation (APA<br>Format)                           | Courage, K. H. (2020, March 9). <i>Machine Learning Takes On</i><br><i>Antibiotic Resistance</i> . Quanta Magazine.<br>https://www.quantamagazine.org/machine-learning-takes-on-antibioti<br>c-resistance-20200309/                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| Original URL                                              | https://www.quantamagazine.org/machine-learning-takes-on-antibioti<br>c-resistance-20200309/                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| Source type                                               | Article                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| Keywords                                                  | Antibiotics, Machine Learning                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| Summary of key<br>points + notes<br>(include methodology) | Antibiotics are a powerful tool in fighting against bacteria/infection<br>and have been for the past century. Unfortunately, they are losing<br>their effectiveness at an alarming rate because bacteria are<br>becoming immune to current drugs. 700,000 people die each year<br>from infections that could have once been treated by antibiotics. That<br>number will rise to 10 million by the year 2050. In addition, the<br>creation of novel antibiotics is significantly slowing down. To combat<br>this issue, scientists at MIT are utilizing deep learning<br>algorithms/deep neural networks to discover novel antibiotics. To find<br>a new antibiotic for E. Coli, the scientists trained their neural network<br>to look for any compound that would inhibit the growth of the<br>bacteria. They did so by presenting the system with a database of<br>known molecular structures; the neural network then found what<br>compounds would work. In addition, the scientists filtered the search<br>more by training the algorithm to predict the toxicity of the<br>compounds. The scientists also provided the trained network to a<br>library of 6,000 compounds already in use for treating humans to<br>repurpose drugs. Out of this neural network screening of<br>compounds, a drug the scientists named halicin emerged out of the<br>pack as a candidate that would work. Through testing, halicin<br>stopped the growth of E. Coli and also killed other bacteria. In<br>addition, the E. Coli showed no signs of mutating to resist halicin.<br>Through RNA-seq, the scientists discovered that halicin interferes<br>with the movement of protons across bacterial membranes, affecting |

|                                       | the bacterial cells' metabolism. The scientists also screened a 107 million compound database through the neural network. From this, a second unnamed antibiotic arose. Looking toward the future, the scientists are looking to focus on certain pathogens more specifically to lead to the development of narrow-spectrum antibiotics that would have less impact on the body. They are also trying to automate and accelerate the whole process by having a machine test the compounds which the neural network finds. They are also considering trying to treat other diseases with the neural network method such as cancer and neurodegenerative diseases. The scientists are hoping to "get north of 90%" in predictive accuracy, but human experimentation will continue to be needed. |
|---------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Research<br>Question/Problem/<br>Need | Antibiotics are becoming ineffective, how do we stop this using machine learning?                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| Important Figures                     | The top two culture dishes are treated with halicin, the novel antibiotic identified by a neural network. The bottom two dishes are treated with ciprofloxacin, a conventional antibiotic. Bacterial growth is greatly reduced in the top dishes because the cells do not seem to become resistant to halicin.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |

| VOCAB: (w/definition)            | N/A                                                                                                                                                                                                            |
|----------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Cited references to follow up on | Sources not listed                                                                                                                                                                                             |
| Follow up Questions              | Can there be completely autonomous machine learning on drug development in the next three years? Will we be able to trust it? Can this be applied to diseases in addition to bacterial infections and viruses? |

# Article #5 Notes: "Printing of wirelessly rechargeable solid-state supercapacitors for soft, smart contact lenses with continuous operations"

| Source Title                                              | "Printing of wirelessly rechargeable solid-state supercapacitors for soft, smart contact lenses with continuous operations"                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
|-----------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Source citation (APA<br>Format)                           | Park, J., Ahn, D. B., Kim, J., Cha, E., Bae, BS., Lee, SY., & Park, JU. (2019). Printing of wirelessly rechargeable solid-state supercapacitors for soft, smart contact lenses with continuous operations. <i>Science Advances, 5(12)</i> . https://doi.org/10.1126/sciadv.aay0764                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| Original URL                                              | https://www.science.org/doi/10.1126/sciadv.aay0764                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| Source type                                               | Journal Article                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| Keywords                                                  | Smart contact lens, 3D-printing                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| Summary of key<br>points + notes<br>(include methodology) | In the past few decades, technology has been improving<br>exponentially. Today, we find ourselves on the verge of wearable<br>nanotechnology. The smart contact lens is a prime example of that.<br>Recent advances in smart contact lenses point to medical<br>applications as well as augmented reality through wireless<br>communication systems. Continuous physiological monitoring of the<br>human body, continuous monitoring of vital signs in the eyes and<br>tears (containing biomarkers associated with diseases), and the<br>potential for expanded applicability in smart devices for drug delivery<br>are all on the horizon. However, previous research on smart contact<br>lenses was conducted with a wired system or wireless power transfer<br>with temporal and spatial restrictions, limiting their continuous use<br>and requiring energy storage devices. In addition, the rigidity, heat,<br>and large sizes of conventional batteries are not suitable for soft,<br>smart contact lenses. To overcome these limitations in this<br>experiment, a soft and smart contact lens with a wirelessly<br>rechargeable, solid-state supercapacitor for continuous operation is<br>explored. All of the smart contact lens components are fully<br>integrated with stretchable structures without obstructing vision — all<br>of the components of the device are outside the wearer's pupil.<br>Supercapacitors are known to exhibit long cycle lives and high-power<br>density, which are suitable for consistent wireless charging. The |

|                                       | supercapacitor in the smart contact lens also serves as physical support for the electronic circuits and antenna. The wireless charging system is combined with the solid-state supercapacitor to enable continuous operation of the smart contact lens with no external electrical port for charging. These systems showed great endurance after 300 cycles with a biaxially tensile strain of 30%. The wireless charging avoided abrupt heating, ensured that the wearer's eyes were safe, and protected the electrical devices from tear fluid over 7 days. The antenna was composed of stretchable AgNF-AgNW hybrid conductors. The power signal was received wirelessly as AC and then converted into DC in the rectifier for storing energy in the supercapacitor. The supercapacitor was fully charged during the wireless charging, showing that it can provide reliable performance and suggesting its potential for long-term use for smart contact lenses. The supercapacitor also operated the LED pixel continuously for 60 seconds. The temperature of the lens was maintained at ~22.9°C and although the wireless power transfer system increased the temperature to ~38.8°C, its wireless function prevented it from touching the eye or the contact lens. In addition, various stability tests demonstrated the long-term usability of the smart contact lens. A human pilot trial and in vivo tests conducted using live rabbits demonstrated the biocompatibility of this lens during the charging and discharging processes. For the in vivo experiments, a male New Zealand white rabbit was used and a human volunteer tested the smart contact lens for the human pilot trial (for 10 minutes). Note that as of now, the smart contact lens has no functionality except for providing power via wireless charging. There is good reliability against thermal and electromagnetic radiation and the results of the in vivo tests provide great promise for functionality in the future for smart contact lenses.                                                                                                                                                                                                                                                                                                                                                                                                                  |
|---------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Research<br>Question/Problem/<br>Need | How can an effective smart contact lens be made?                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| Important Figures                     | Antenna<br>LED<br>Rectifier<br>UV-cross-linking<br>UV-cross-linking<br>Electrode<br>Electrolyte<br>Electrolyte<br>Electrolyte<br>Electrolyte<br>Electrolyte<br>Electrolyte<br>Electrolyte<br>Electrolyte<br>Electrolyte<br>Electrolyte<br>Electrolyte<br>Electrolyte<br>Electrolyte<br>Electrolyte<br>Electrolyte<br>Electrolyte<br>Electrolyte<br>Electrolyte<br>Electrolyte<br>Electrolyte<br>Electrolyte<br>Electrolyte<br>Electrolyte<br>Electrolyte<br>Electrolyte<br>Electrolyte<br>Electrolyte<br>Electrolyte<br>Electrolyte<br>Electrolyte<br>Electrolyte<br>Electrolyte<br>Electrolyte<br>Electrolyte<br>Electrolyte<br>Electrolyte<br>Electrolyte<br>Electrolyte<br>Electrolyte<br>Electrolyte<br>Electrolyte<br>Electrolyte<br>Electrolyte<br>Electrolyte<br>Electrolyte<br>Electrolyte<br>Electrolyte<br>Electrolyte<br>Electrolyte<br>Electrolyte<br>Electrolyte<br>Electrolyte<br>Electrolyte<br>Electrolyte<br>Electrolyte<br>Electrolyte<br>Electrolyte<br>Electrolyte<br>Electrolyte<br>Electrolyte<br>Electrolyte<br>Electrolyte<br>Electrolyte<br>Electrolyte<br>Electrolyte<br>Electrolyte<br>Electrolyte<br>Electrolyte<br>Electrolyte<br>Electrolyte<br>Electrolyte<br>Electrolyte<br>Electrolyte<br>Electrolyte<br>Electrolyte<br>Electrolyte<br>Electrolyte<br>Electrolyte<br>Electrolyte<br>Electrolyte<br>Electrolyte<br>Electrolyte<br>Electrolyte<br>Electrolyte<br>Electrolyte<br>Electrolyte<br>Electrolyte<br>Electrolyte<br>Electrolyte<br>Electrolyte<br>Electrolyte<br>Electrolyte<br>Electrolyte<br>Electrolyte<br>Electrolyte<br>Electrolyte<br>Electrolyte<br>Electrolyte<br>Electrolyte<br>Electrolyte<br>Electrolyte<br>Electrolyte<br>Electrolyte<br>Electrolyte<br>Electrolyte<br>Electrolyte<br>Electrolyte<br>Electrolyte<br>Electrolyte<br>Electrolyte<br>Electrolyte<br>Electrolyte<br>Electrolyte<br>Electrolyte<br>Electrolyte<br>Electrolyte<br>Electrolyte<br>Electrolyte<br>Electrolyte<br>Electrolyte<br>Electrolyte<br>Electrolyte<br>Electrolyte<br>Electrolyte<br>Electrolyte<br>Electrolyte<br>Electrolyte<br>Electrolyte<br>Electrolyte<br>Electrolyte<br>Electrolyte<br>Electrolyte<br>Electrolyte<br>Electrolyte<br>Electrolyte<br>Electrolyte<br>Electrolyte<br>Electrolyte<br>Electrolyte<br>Electrolyte<br>Electrolyte<br>Electrolyte<br>Electrolyte<br>Electrolyte<br>Electrolyte<br>Electrolyte<br>Electrolyte<br>Electrolyte<br>Electrolyte<br>Electrolyte<br>Electrolyte<br>Electrolyte |
| VOCAB: (w/definition)                 | MIS - monolithically integrated solid-state                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |

| Cited references to follow up on | Ti. Kim, J. G. McCall, Y. H. Jung, X. Huang, E. R. Siuda, Y. Li, J. Song, Y. M. Song, H. A. Pao, RH. Kim, C. Lu, S. D. Lee, IS. Song, G. Shin, R. al-Hasani, S. Kim, M. P. Tan, Y. Huang, F. G. Omenetto, J. A. Rogers, M. R. Bruchas, Injectable, cellular-scale optoelectronics with applications for wireless optogenetics. Science 340, 211–216 (2013). |
|----------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Follow up Questions              | Is there any way in which this process could be done on other wearable tech, like hearing aids? What are some health applications to this technology? AR applications? Metaverse?                                                                                                                                                                           |

#### Article #6 Notes: "Pressure and Blood Flow Regulating System Inside an Orthopedic Cast"

| Source Title                                              | "Pressure and Blood Flow Regulating System Inside an Orthopedic Cast"                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
|-----------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Source citation (APA<br>Format)                           | Shoshan, M., & Shamaev, B. (2015). <i>Pressure and Blood Flow</i><br><i>Regulating System Inside an Orthopedic Cast</i> . Abstract Search.<br>Retrieved September 5, 2022, from<br>https://abstracts.societyforscience.org/Home/FullAbstract?ISEFYears<br>=0%2C&Category=Biomedical%20Engineering&AllAbstracts=True&<br>FairCountry=Any%20Country&FairState=Any%20State&ProjectId=1<br>2362                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| Original URL                                              | https://abstracts.societyforscience.org/Home/FullAbstract?ISEFYears<br>=0%2C&Category=Biomedical%20Engineering&AllAbstracts=True&<br>FairCountry=Any%20Country&FairState=Any%20State&ProjectId=1<br>2362                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| Source type                                               | Abstract only (couldn't find/access the full paper - out of Israel)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| Keywords                                                  | Cast pressure, pressure regulation                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| Summary of key<br>points + notes<br>(include methodology) | Purpose of the Experiment: Today, it is impossible to control<br>inner-cast pressure during the patient's healing process. The human<br>limb can change its volume after an injury therefore irregular<br>pressure can be formed within the cast. This pressure can harm the<br>wanted bone position, delay the patient's recovery and might cause<br>irreversible damage to nerves and tissues. Solution and working<br>procedure: Our solution is a pressure regulating system which<br>contains an air bag that replaces the cast's soft layer, and is installed<br>using a new casting method. The system consists of a sensor, a<br>micro-controller, an air pump and a user interface. The<br>micro-controller will instruct the air pump to control the pressure<br>according to the sensor's readings and the doctor's recommendation.<br>At the beginning of the casting process the doctor will set the system<br>and determine the wanted pressure, after that there is no need to<br>interfere and the system is working on its own and regulating the<br>pressure. Besides the ability to regulate pressure the system can<br>identify a dangerous pressure values and problems in itself (such as<br>a hole in the air bag) and notify the user. Conclusions: During the<br>project we built a fully functioning prototype which can be used as a<br>base for a marketable product. Our product is simple, mostly |

#### Tran 16

|                                       | reusable and is providing a solution for a well-known medical issue.<br>We predict our product becoming a wide-spread, standard part of the<br>casting process.        |
|---------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Research<br>Question/Problem/<br>Need | Is there a way to create a pressure regulating orthopedic cast?                                                                                                        |
| Important Figures                     | Image: contrast shown above with the microprocessor and air pump                                                                                                       |
| VOCAB: (w/definition)                 | N/A                                                                                                                                                                    |
| Cited references to follow up on      | N/A                                                                                                                                                                    |
| Follow up Questions                   | Couldn't find whole article<br>Are there any other applications in which something like this could be<br>applied? Internally (with internal bleeding)? Brain injuries? |

#### Article #7 Notes: "Artificial Intelligence Enables Real-Time and Intuitive Control of Prostheses via Nerve Interface"

| Source Title                                              | "Artificial Intelligence Enables Real-Time and Intuitive Control of Prostheses via Nerve Interface"                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
|-----------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Source citation (APA<br>Format)                           | Luu, D. K., Nguyen, A. T., Jiang, M., Drealan, M. W., Xu, J., Wu, T.,<br>Tam, W., Zhao, W., Lim, B. Z. H., Overstreet, C. K., Zhao, Q., Cheng,<br>J., Keefer, E. W., & Yang, Z. (2022). Artificial Intelligence Enables<br>Real-Time and Intuitive Control of Prostheses via Nerve Interface.<br><i>IEEE Transactions on Biomedical Engineering</i> , 69(10), 3051–3063.<br>https://doi.org/10.1109/TBME.2022.3160618                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| Original URL                                              | https://ieeexplore.ieee.org/document/9738457                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| Source type                                               | Journal Article                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| Keywords                                                  | Sensory feedback                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| Summary of key<br>points + notes<br>(include methodology) | The next generation prosthetic hand that moves and feels like a real hand requires a robust neural interconnection between the human minds and machines. Employing an artificial intelligence (AI) agent to translate the amputee's movement intent through a peripheral nerve interface. The AI agent is designed based on the recurrent neural network (RNN) and could simultaneously decode six degree-of-freedom (DOF) from multichannel nerve data in real-time. The decoder's performance is characterized in motor decoding experiments with three human amputees. Individual finger and wrist movements up to 97-98% accuracy. Second, we demonstrate the AI agent's real-time performance by measuring the reaction time and information throughput in a hand gesture matching task. Third, we investigate the AI agent's long-term uses and show the decoder's robust predictive performance over a 16-month implant duration. |
| Research<br>Question/Problem/<br>Need                     | Sensory feedback using AI applications for prostheses.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |



#### Article #8 Notes: Materials of Prosthetic Limbs

| Source Title                                              | "Materials of Prosthetic Limbs"                                                                                                                                                                                                                                                                                                                                                                      |
|-----------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Source citation (APA<br>Format)                           | Mota, A. (2017). <i>Materials of Prosthetic Limbs</i> . California State<br>Polytechnic University, Pomona, Mechanical Engineering<br>Department.<br>https://scholarworks.calstate.edu/downloads/h128ng975/                                                                                                                                                                                          |
| Original URL                                              | https://scholarworks.calstate.edu/downloads/h128ng975/                                                                                                                                                                                                                                                                                                                                               |
| Source type                                               | Memorandum                                                                                                                                                                                                                                                                                                                                                                                           |
| Keywords                                                  | Materials                                                                                                                                                                                                                                                                                                                                                                                            |
| Summary of key<br>points + notes<br>(include methodology) | Brief history of prostheses.<br>Metals: Aluminum, Titanium, Magnesium, Copper, Steel, used for<br>support, mechanisms<br>Polymers: used for joints, 3D printing not discussed, less durable<br>Carbon fibers: low weight, high durability, brittle<br>Supporting materials: silicone liners, nylon liners for biocompatibility,<br>no skin blisters, rashes<br>Future materials: interchangeability? |
| Research<br>Question/Problem/<br>Need                     | What material do we create prostheses from?                                                                                                                                                                                                                                                                                                                                                          |
| Important Figures                                         | N/A                                                                                                                                                                                                                                                                                                                                                                                                  |
| VOCAB: (w/definition)                                     | Polymers - plastics, plastics are made of polymers                                                                                                                                                                                                                                                                                                                                                   |
| Cited references to follow up on                          | Schreiber, N.S., & Gettens, R.T.T. <i>Aquatic Design for Individuals with Disabilities: Upper Limb Prosthesis</i> . Department of Biomedical Engineering, Western New England University.                                                                                                                                                                                                            |
| Follow up Questions                                       | Will 3D printed plastics work? 3D printed carbon fiber? How do we make these materials less brittle? Interchangeability?                                                                                                                                                                                                                                                                             |

# Article #9 Notes: "Comfort and function remain key factors in upper limb prosthetic abandonment: findings of a scoping review"

| Source Title                                              | "Comfort and function remain key factors in upper limb prosthetic abandonment: findings of a scoping review"                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
|-----------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Source citation (APA                                      | Smail, L. C., Neal, C., Wilkins, C., & Packham, T. L. (2021).                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| romat)                                                    | Comfort and function remain key factors in upper limb                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
|                                                           | prosthetic abandonment: Findings of a scoping review.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
|                                                           | Disability and Rehabilitation: Assistive Technology, 16(8),                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
|                                                           | 821–830. <u>https://doi.org/10.1080/17483107.2020.1738567</u>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| Original URL                                              | https://wpi-illiad-oclc-org.ezpv7-web-p-u01.wpi.edu/illiad/illiad.dll?Acti<br>on=10&Form=75&Value=128097                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| Source type                                               | Journal article                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| Keywords                                                  | Prosthesis; upper limb;<br>abandonment; rejection;<br>comfort; function                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| Summary of key<br>points + notes<br>(include methodology) | Prostheses are abandoned at such a high rate because of comfort<br>and usability/functionality. Across time, reasons for abandonment<br>could be broadly categorized into comfort and function. Weight,<br>temperature and perspiration were among the most common and<br>persistent comfort-related reasons for abandonment. Regarding<br>function, studies-reported abandonment was attributed to key<br>concerns about control and sensory feedback, whereby participants<br>may feel more functional without their device. Currently, there are<br>four main types of upper limb prosthetic devices available for<br>individuals living with upper limb loss: passive, body powered,<br>myoelectric and hybrid. Very variable abandonment rate for each<br>type of prosthesis. This challenge is inherently difficult because of<br>the number of amputees and their different situations. Evolution over |

|                                       | time of abandonment? A scoping review was conducted to allow us<br>to compile and develop a thematic summary from the relevant<br>literature on upper limb prosthesis abandonment. 6 criteria:<br><ol> <li>Identifying the research question</li> <li>Identifying relevant studies</li> <li>Study selection</li> <li>Charting the data</li> <li>Collating, summarizing and reporting results</li> <li>Consultation.</li> </ol> <li>Ultimately, through screening, 9 articles were chosen for the review.</li> <li>Painful</li> <li>Heavy</li> <li>Not functional</li> <li>Does not belong to them, like a tool they are using</li> <li>Too many repairs</li> <li>Needs to be much more mechanically complex</li> <li>Weight</li> <li>Temp</li> <li>Sensory feedback</li> <li>Bilaterals and dominant arm amputees did not abandon as<br/>much because of the need for independence</li> <li>Lack of training with the prosthesis</li> <li>weight=comfort</li> <li>More control</li> <li>3d printing helps with comfort</li> <li>Closed loop control</li> <li>myoelectric</li> |
|---------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Research<br>Question/Problem/<br>Need | Why are prostheses abandoned at such a high rate?                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |

#### Tran 22



| Cited references to follow up on | Resnik L, Ekerholm S, Borgia M, et al. A national study of Veterans with major upper limb amputation: survey methods, participants, and summary findings. PLoS One. 2019; 14:e0213578.                                                          |
|----------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Follow up Questions              | Not in-depth about hybrid prostheses, how does that data look now,<br>three-four years later. How can this research be expanded to new,<br>modern hybrid prostheses now? How would the data be skewed if<br>current myoelectric data was added? |

# Article #10 Notes: "An Overview of the Developmental Process for the Modular Prosthetic Limb"

| Source Title                                              | "An Overview of the Developmental Process for the Modular Prosthetic Limb"                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
|-----------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Source citation (APA<br>Format)                           | Johannes, M. S., Bigelow, J. D., Burck, J. M., Harshbarger, S.<br>D., Kozlowski, M. V., & Doren, T. V. (2011). An Overview of<br>the Developmental Process for the Modular Prosthetic<br>Limb. <i>JOHNS HOPKINS APL TECHNICAL DIGEST</i> , <i>30</i> (3),<br>10.                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| Original URL                                              | https://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.685.7837<br>&rep=rep1&type=pdf                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| Source Type                                               | Journal                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| Keywords                                                  | Modular, upper limb, prosthetic/prosthesis                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| Summary of key<br>points + notes<br>(include methodology) | <ul> <li>First purpose was to restore limb function to those who had lost them in the line of duty (not born with it)/history of prostheses in this context</li> <li>7 degrees of motion for the original old model</li> <li>Noninvasive neural strategies</li> <li>Closed loop neurological control again</li> <li>For prototype 1: 22 degrees of motion</li> <li>Possibilities:</li> <li>Electromechanical</li> <li>Mesofluidic (hydraulic)</li> <li>Monopropellant (pneumatic using a hydrogen peroxide and catalyst system)</li> <li>From these potential technologies, the following viable system configurations were considered:</li> <li>Full limb electromechanical extrinsic</li> </ul> |

|                                       | <ul> <li>Full limb mesofluidic</li> <li>Full limb monopropellant</li> <li>Hybridmesofluidichand/electromechanicalupper arm</li> <li>Hybrid mono</li> <li>Criteria</li> <li>Development risk (requirements compliance, technology readiness, number of required development cycles, undeveloped components, intellectual property issues)</li> <li>Comfort (mass, mass distribution, fluid or gas emissions, noise)</li> <li>Cosmesis (shape, volume, appearance, elasticity, durability)</li> <li>Function [energy per day, torque, speed, dexterity (DOF), range of motion]</li> <li>Cost (development, engineering labor costs, prototype costs, first cost, life-cycle cost)</li> <li>Supportability (reliability, maintainability)</li> <li>Commercial viability (amputation levels accommodated, transportability, manufacturability)</li> <li>Operational safety (battery safety, drive power safety, uncontrolled impact safety, controlled impact safety)</li> </ul> |
|---------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Research<br>Question/Problem/<br>Need | How do we create a modular prosthetic arm?                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| Important Figures                     | First prototype of the modular prosthetic limb (MPL)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| VOCAB: (w/definition)                 | MPL - modular prosthetic limb                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |

| Tran | 26 |
|------|----|
|------|----|

| Cited references to follow up on | n/a                                                                                                                                             |
|----------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------|
| Follow up Questions              | How can neural networks, osseointegration, and other modern prosthetic technologies be integrated into this modular build form of a prosthesis? |

# Article #11 Notes: "Myoelectric Control Performance of Two Degree of Freedom Hand-Wrist Prosthesis by Able-Bodied and Limb-Absent Subjects"

| Source Title                                              | "Myoelectric Control Performance of Two Degree of Freedom<br>Hand-Wrist Prosthesis by Able-Bodied and Limb-Absent Subjects"                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |  |  |
|-----------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|
| Source citation (APA<br>Format)                           | Zhu, Z., Li, J., Boyd, W. J., Martinez-Luna, C., Dai, C., Wang, H.,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |  |  |
|                                                           | Wang, H., Huang, X., Farrell, T. R., & Clancy, E. A. (2022).                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |  |  |
|                                                           | Myoelectric Control Performance of Two Degree of                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |  |  |
|                                                           | Freedom Hand-Wrist Prosthesis by Able-Bodied and                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |  |  |
|                                                           | Limb-Absent Subjects. IEEE Transactions on Neural                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |  |  |
|                                                           | Systems and Rehabilitation Engineering, 30, 893–904.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |  |  |
|                                                           | https://doi.org/10.1109/TNSRE.2022.3163149                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |  |  |
| Original URL                                              | https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9744113                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |  |  |
| Source type                                               | Journal Article                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |  |  |
| Keywords                                                  | Prosthesis Control, EMG-force, EMG signal<br>processing, electromyogram, myoelectric control                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |  |  |
| Summary of key<br>points + notes<br>(include methodology) | Using surface electromyogram signals from remnant muscles as the control input. Two such regression-based controllers, along with conventional, sequential two-site control with co-contraction mode switching (SeqCon), in box-block, refined-clothespin and door-knob tasks, on 10 able-bodied and 4 limb-absent subjects. Subjects operated a commercial hand and wrist using a socket bypass harness. One 2-DoF controller (DirCon) related the intuitive hand actions of open-close and pronation-supination to the associated prosthesis hand-wrist actions, respectively. The other (MapCon) mapped myoelectrically more distinct, but less intuitive, actions of wrist flexion-extension and ulnarradial deviation. SeqCon performed better statistically than MapCon in the predominantly 1-DoF |  |  |

|                                       | <ul> <li>box-block task (&gt; 20 blocks/minute vs. 8–18 blocks/minute, on average). In this task, SeqCon likely benefited from an ability to easily focus on 1-DoF and not inadvertently trigger co-contraction for mode switching. The remaining two tasks require 2-DoFs, and both 2-DoF controllers each performed better (factor of 2–4) than SeqCon. We also compared the use of 12 vs. 6 optimally-selected EMG electrodes as inputs, finding no statistical difference.</li> <li>Opn-Cls &amp; ProSup direct control, a new Ext-Flx &amp; Rad-UIn mapping control with translation, and conventional two-site sequential control.</li> <li>Six or twelve optimally-sited electrodes (out of 16 total) were tested on a prosthesis to investigate the minimum number of electrodes feasible on commercial prostheses</li> <li>Programmed in matlab</li> <li>MapCon = congenital</li> <li>Too much calibration - challenge for self adjusting at home for my proj</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                            |  |  |
|---------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|
| Research<br>Question/Problem/<br>Need | What is the best current method of control for myoelectrics?                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |  |  |
| Important Figures                     | Control       10s       10s       10s       10s       10s       10s       10s         MapCon       Image: Control       Image: Contro       Image: Control       Image: Control |  |  |
| VOCAB: (w/definition)                 | Regression models (no standards) = regression for data points<br>applied to prosthetic movement<br>Pronate = down = rad<br>Supinate = up<br>MVC = model view controller                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |  |  |
| Cited references to follow up on      | Z. Zhu et al., "EMG-force and EMG-target models during<br>force-varying bilateral hand-wrist contraction in able-bodied and<br>limb-absent subjects," IEEE Trans. Neural Syst. Rehabil. Eng., vol.<br>28, no. 12, pp. 3040–3050, Dec. 2020.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |  |  |
| Follow up Questions                   | What is the optimal amount of electrodes?                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |  |  |

## Article #12 Notes: "A Method for 3-D Printing Patient-Specific Prosthetic Arms With High Accuracy Shape and Size"

| Source Title                                              | "A Method for 3-D Printing Patient-Specific Prosthetic Arms With<br>High Accuracy Shape and Size"                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |  |
|-----------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|
| Source citation (APA<br>Format)                           | Cabibihan, JJ., Abubasha, M. K., & Thakor, N. (2018). A Method for<br>3-D Printing Patient-Specific Prosthetic Arms With High<br>Accuracy Shape and Size. <i>IEEE Access</i> , 6, 25029–25039.<br>https://doi.org/10.1109/ACCESS.2018.2825224                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |  |  |
| Original URL                                              | https://ieeexplore.ieee.org/abstract/document/8334526                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |  |  |
| Source type                                               | Journal Article                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |  |  |
| Keywords                                                  | 3D printed prostheses<br>Accurate shape, size<br>CT Scan<br>Silicone Casting                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |  |  |
| Summary of key<br>points + notes<br>(include methodology) | <ul> <li>Restates that comfort and appearance are desired features</li> <li>The prosthetic arm was found to have high accuracy on the basis of the Dice Similarity Coefficient (DSC; 0.96), percent error (0.67%), and relative mean distance (0.34 mm, SD = 0.48 mm), median -0.32mm</li> <li>The socket achieved high accuracy based on those measures: DSC (0.95), percent error (2.97%), and relative mean distance (0.46 mm, SD = 1.70 mm), median -0.35mm</li> <li>Difference in volume: maximum distance of 1.44 mm and a minimum of -2.17 mm in selected locations of the prosthetic arm.</li> <li>Overlap of 5.07 mm, however, other regions of the socket have available space for the displaced tissue to occupy. This corresponds to a distance of -4.41 mm from the stump to the available space at the wall of the socket.</li> <li>Advantages: First, the patient has to visit the hospital once for a CT scan to be done. The patient does not have to get measured by the prosthetists or designers because the measurements are directly taken from the CT data. Second, there is no need for using digital photographs for scaling</li> </ul> |  |  |

|                                       | <ul> <li>prosthetic hands or arms. That approach can result in numerous errors from the depth of focus and lighting from the way the photos were taken.</li> <li>Lastly, the 3D printing fabrication method is highly suitable for one-off patient-specific prosthesis. There are different levels of amputation and there is no one-size-fits-all prosthesis. Low Cost.</li> <li>3 parts, all accurate</li> <li>Overall, this paper demonstrates that CT imaging, computed-aided design, desktop 3-D printing, and silicone casting can achieve patient-specific cosmetic prosthetic arms with high accuracy.</li> <li>Stigma, we need to fix this</li> <li>Process: CT scan/portable 3D scanner, CAD software, mirrored, structural support in CAD, silicone mold, socket, fit together</li> <li>Overall good results</li> <li>Weight and aesthetics can be improved, sensation as well</li> </ul> |
|---------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Research<br>Question/Problem/<br>Need | How do we create an accurate fitting of a 3D printed/silicone casted prosthesis cheaply and efficiently?                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| Important Figures                     | $ \begin{array}{c} a \\ \hline \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |

| VOCAB: (w/definition)            | Shuttle lock mechanism - A shuttle lock is fabricated into the bottom<br>of the socket which the pin liner inserts into locking the residual limb<br>in place. There is a simple unlocking mechanism which can be<br>accessed at the bottom of the socket to release the pin from the lock.                |
|----------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Cited references to follow up on | <ul> <li>A. Y. Alhaddad et al., "Toward 3D printed prosthetic hands that can satisfy psychosocial needs: Grasping force comparisons between a prosthetic hand and human hands" in Social Robotics, Cham, Switzerland:Springer, pp. 304-313, 2017.</li> <li>psychological effects of prosthetics</li> </ul> |
| Follow up Questions              | How much lighter does a prosthesis need to be compared to the weight of the opposite healthy arm for a user to not complain about the weight. At 22-23% lighter, the user still thinks that the prosthesis is too heavy.                                                                                   |

# Article #13 Notes: "Age at First Prosthetic Fitting and Later Functional Outcome in Children and Young Adults with Unilateral Congenital Below-Elbow Deficiency: A Cross-Sectional Study"

| Source Title                                              | "Age at First Prosthetic Fitting and Later Functional Outcome in<br>Children and Young Adults with Unilateral Congenital Below-Elbow<br>Deficiency: A Cross-Sectional Study"                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |  |  |
|-----------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|
| Source citation (APA<br>Format)                           | <ul> <li>Huizing, K., Reinders-Messelink, H., Maathuis, C., Hadders-Algra,<br/>M., &amp; van der Sluis, C. K. (2010). Age at First Prosthetic<br/>Fitting and Later Functional Outcome in Children and Young<br/>Adults with Unilateral Congenital Below-Elbow Deficiency: A<br/>Cross-Sectional Study. <i>Prosthetics and Orthotics</i><br/><i>International</i>, <i>34</i>(2), 166–174.<br/>https://doi.org/10.3109/03093640903584993</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |  |
| Original URL                                              | https://journals.sagepub.com/doi/full/10.3109/03093640903584993                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |  |  |
| Source type                                               | Journal Article                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |  |  |
| Keywords                                                  | Prosthetic fitting, age, children and young adults, congenital below-elbow                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |  |  |
| Summary of key<br>points + notes<br>(include methodology) | Objective: to evaluate whether prosthetic fitting before the age of one year is associated with better outcomes in children with unilateral congenital below-elbow deficiency compared to children fitted after the age of one. Twenty subjects aged 6–21 years were recruited (five prosthetic users and 15 non-users). The Child Amputee Prosthetics Project-Prosthesis Satisfactory Inventory (CAPP-PSI) and the Prosthetic Upper Extremity Functional Index (PUFI) were used to assess patient satisfaction and functional use of the prosthesis. Videotapes were used to assess motor performance. Initial prosthetic fitting before one year of age was related to use of a prosthesis for at least four years. Age at first fitting was not associated with satisfaction with the prosthesis, functional use of the prosthesis or motor skills. Discrepancies between ease of performance with prosthesis and usefulness of the prosthesis as well as between capacity and performance of activities were found. The video |  |  |

|                                       | assessments showed impaired movement adaptation to some tasks<br>in six subjects. In conclusion, early prosthetic fitting seems to have a<br>limited impact on prosthesis use during later stages of life.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |            |                  |                           |                                                                                          |         |
|---------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------|------------------|---------------------------|------------------------------------------------------------------------------------------|---------|
| Research<br>Question/Problem/<br>Need | Does the age of fitting a prosthesis to a congenital amputee affect<br>the outcome of use later in life for the amputee?                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |            |                  |                           |                                                                                          |         |
| Important Figures                     | Numerical         Unit           1         4           2         4           2         4           2         4           2         4           2         4           2         4           3         4           4         4           5         4           6         4           7         4           8         4           9         4           10         4           10         4           10         4           10         4           10         4           10         4           10         4           10         4           10         4           10         4           10         4           10         4           10         4           10         4           10         4           10         4           10         4           10         4           10         4           10         4           < | ining the interview of the second sec | nformation | Agenteric Normal | putees, th<br>osthesis. A | Apen reporter<br>4<br>3<br>4<br>10<br>10<br>10<br>10<br>10<br>10<br>10<br>10<br>10<br>10 | Wurgper |
| VOCAB: (w/definition)                 | UCBED - unilateral congenital transverse below-elbow deficiency<br>Neuronal Group Selection Theory (NGST) - developed by Edelman<br>in 1989.8–10 From the NGST point of view, children with UCBED<br>may lack the representation of the missing part of the limb in the<br>cerebral cortex.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |            |                  |                           |                                                                                          |         |
| Cited references to follow up on      | Scotland TR, Galway HR A long-term review of children with congenital and acquired upper limb deficiency. <i>J Bone Joint Surg Br</i> 1983;65:346–349.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |            |                  |                           |                                                                                          |         |
| Follow up Questions                   | If this study were to be performed on non-congenital amputees, how would the results differ? Would they differ?                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |            |                  |                           |                                                                                          |         |

# Article #14 Notes: "A novel socket design for upper-limb prosthesis"

| Source Title                                              | "A novel socket design for upper-limb prosthesis"                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |  |  |  |
|-----------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|
| Source citation (APA                                      | Sang, Y., Li, X., Gan, Y., Su, D., & Luo, Y. (2014). A novel socket                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |  |  |  |
| romat)                                                    | design for upper-limb prosthesis. In International Journal of                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |  |  |  |
|                                                           | Applied Electromagnetics and Mechanics, Vol. 45, p. 886.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |  |  |  |
|                                                           | https://doi.org/10.3233/JAE-141920                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |  |  |  |
| Original URL                                              | https://www.researchgate.net/profile/Yuanjun-Sang/publication/27905<br>6094_A_novel_socket_design_for_upper-limb_prosthesis/links/5738<br>5a0708ae298602e29033/A-novel-socket-design-for-upper-limb-prost<br>hesis.pdf                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |  |  |  |
| Source type                                               | Journal article                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |  |  |  |
| Keywords                                                  | Novel socket design, prosthetic interface, upper limb prosthesis, safety, comfort, functionality                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |  |  |  |
| Summary of key<br>points + notes<br>(include methodology) | <ul> <li>Prosthetic socket is the only channel for load transfer between limb stump and prosthetic limb, so its design is most important in meeting the requirements of comfort and function</li> <li>In order to improve comfort and functionality of the upper-limb prosthetic socket, this paper presents a novel design concept of the socket in which the areas and working time of compression can be alternated in needs</li> <li>A physical model of prosthesis socket with four pressure-adjustable chambers driven by a vacuum pump was designed to form pressure units in the socket to simulate its function in changing compression loads</li> <li>The effectiveness of the design was proved by experiments</li> <li>Spring and air pump system</li> <li>4 sections around the 3D printed socket, lined with silicone</li> <li>Measured pressure between relaxed and tight modes as well as the time and degree of axial load when 4kg was applied to the end of the socket</li> </ul> |  |  |  |

| Research<br>Question/Problem/<br>Need | How do we create a more comfortable prosthetic socket?                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |  |  |  |  |
|---------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|--|
| Important Figures                     | <image/>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |  |  |  |  |
|                                       | 3D cad model of the socket                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |  |  |  |  |
|                                       | Table 1           Experimental results in different working status                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |  |  |  |  |
|                                       | Status         Compression pressure/mmHg         Switching time/s         Deflection angles           Area 1         Area 2         Area 4         200 for 100 to 100                                         |  |  |  |  |
|                                       | Tight status         133.02 $69.95$ 122.15 $124.90$ $ 2.5$ Relax status         43.31         41.13         34.62         42.85         2.3 (from tight status to relax status) $5.5^{\circ}$ Tight status         133.08         90.43         119.81         124.65         0.2 (from relax status to tight status) $2.5^{\circ}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |  |  |  |  |
|                                       | Socket     Pressure<br>regulating valve     Vacuum pump       Pressure sensors     Image: Construction of the sensor of t |  |  |  |  |
|                                       | Data and diagram of the experiment                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |  |  |  |  |
| VOCAB: (w/definition)                 | Ischemic - loss of blood supply                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |  |  |  |  |
| Cited references to follow up on      | R.D. Alley, B. Sc. and C.P., Advancement of upper extremity<br>prosthetic interface and frame design, Proceedings of the 2002<br>MyoElectric Controls/Powered Prosthetics Symposium Fredericton,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |  |  |  |

|                     | Canada, 2002.                                                                                                                               |
|---------------------|---------------------------------------------------------------------------------------------------------------------------------------------|
| Follow up Questions | How could this be applied on a larger scale to allow the whole prosthesis to open and close (grow) with the user as they (a child) grow up? |

## Article #15 Notes: "The MANUS-HAND Dextrous Robotics Upper Limb Prosthesis: Mechanical and Manipulation Aspects"

| Source Title                                              | "The MANUS-HAND Dextrous Robotics Upper Limb Prosthesis:<br>Mechanical and Manipulation Aspects"                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
|-----------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Source citation (APA<br>Format)                           | Pons, J. L., Rocon, E., Ceres, R., Reynaerts, D., Saro, B., Levin,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
|                                                           | S., & Van Moorleghem, W. (2004). The MANUS-HAND                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
|                                                           | Dextrous Robotics Upper Limb Prosthesis: Mechanical and                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
|                                                           | Manipulation Aspects. Autonomous Robots, 16(2),                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
|                                                           | 143–163.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
|                                                           | https://doi.org/10.1023/B:AURO.0000016862.38337.f1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| Original URL                                              | https://link.springer.com/content/pdf/10.1023/B:AURO.0000016862.3<br>8337.f1.pdf                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| Source type                                               | Journal article                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| Keywords                                                  | dextrous hands, prosthetic hands, EMG control                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| Summary of key<br>points + notes<br>(include methodology) | For the mechanical part<br>1. the finger mechanism,<br>2. the thumb mechanism, and<br>3. the wrist mechanism.<br>10 joints total, 3 individual, the rest are underactuated<br>Pulley tendon system<br>Geneva mechanism thumb<br>Spring system between the object and the palm of the hand<br>Finger activation is blocked after equilibrium is reached<br>3 different levels of EMG amplitude to do different things known as 3<br>bit control<br>This results in 17 usable different commands that the user can send<br>to the arm<br>Senses position and force with hall sensors |

|                                       | Fingers obey hooke's law, acting as a spring<br>Trained on VR                                                                                                                                                                                                                                                                                                                          |                                                         |  |  |  |  |
|---------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------|--|--|--|--|
| Research<br>Question/Problem/<br>Need | To develop a dextrous robotic arms/hands.                                                                                                                                                                                                                                                                                                                                              |                                                         |  |  |  |  |
| Important Figures                     | Table 2. Importance of actu                                                                                                                                                                                                                                                                                                                                                            | ation properties.                                       |  |  |  |  |
|                                       | Properties                                                                                                                                                                                                                                                                                                                                                                             | Importance                                              |  |  |  |  |
|                                       | Performance                                                                                                                                                                                                                                                                                                                                                                            | Very important                                          |  |  |  |  |
|                                       | Energy storage capacity                                                                                                                                                                                                                                                                                                                                                                | Very important                                          |  |  |  |  |
|                                       | Specific power                                                                                                                                                                                                                                                                                                                                                                         | Very important                                          |  |  |  |  |
|                                       | Required transmission                                                                                                                                                                                                                                                                                                                                                                  | Very important                                          |  |  |  |  |
|                                       | Self braking Very important                                                                                                                                                                                                                                                                                                                                                            |                                                         |  |  |  |  |
|                                       | Noise Very important                                                                                                                                                                                                                                                                                                                                                                   |                                                         |  |  |  |  |
|                                       | Safety Very important                                                                                                                                                                                                                                                                                                                                                                  |                                                         |  |  |  |  |
|                                       | Robustness Important                                                                                                                                                                                                                                                                                                                                                                   |                                                         |  |  |  |  |
|                                       | Volumetric power Important                                                                                                                                                                                                                                                                                                                                                             |                                                         |  |  |  |  |
|                                       | Bandwidth Less important                                                                                                                                                                                                                                                                                                                                                               |                                                         |  |  |  |  |
|                                       | Controllability Less important                                                                                                                                                                                                                                                                                                                                                         |                                                         |  |  |  |  |
|                                       | All design criteria for the manus-hand                                                                                                                                                                                                                                                                                                                                                 |                                                         |  |  |  |  |
| VOCAB: (w/definition)                 | Dextrous - multiple uses<br>Unactuated principle - having less motors than joints<br>extrinsic movements - holding something and moving it around<br>(grasping)<br>intrinsic movements - moving something within the hand (dynamic<br>manipulation)<br>Geneva-wheel - gear mechanism<br>Martensitic - malleable (for prosthetic fingers) can be bent into shape<br>no mechanical parts |                                                         |  |  |  |  |
| Cited references to follow up on      | Otto Bock System Electric Hand, 647F<br>Germany.<br>Kyberd, P.J. and Chappel, P.H. 1994.                                                                                                                                                                                                                                                                                               | 1326, Nov. 2001, Otto Bock,<br>The Southampton hand: An |  |  |  |  |

|                     | intelligent myoelectric prosthesis. Journal of Rehabilitation Research and Development, 31(4):326–334.                                                                                                                                                |
|---------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Follow up Questions | The prosthesis was fixed to some of the amputees' residual limbs<br>with velcro and such. Would using current 3D scanning tech for liners<br>change the data received? How so? How can we implement<br>modularity into this spring mechanical system? |

#### Article #16 Notes: "Mechanical Design of a Prosthetic Human Arm and its Dynamic Simulation"

| Source Title                                              | "Mechanical Design of a Prosthetic Human Arm and its Dynamic Simulation"                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |  |  |  |
|-----------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|
| Source citation (APA<br>Format)                           | Leal-Naranjo, J., Ceccarelli, M., & Torres San miguel, C. (2017).                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |  |  |  |
|                                                           | Dynamic Simulation (Vol. 540, p. 490).                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |  |  |
|                                                           | https://doi.org/10.1007/978-3-319-49058-8_52                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |  |  |  |
| Original URL                                              | https://www.researchgate.net/profile/Jose-Leal-Naranjo/publication/3<br>11099028_Mechanical_Design_of_a_Prosthetic_Human_Arm_and_it<br>s_Dynamic_Simulation/links/5d484acb299bf1995b67de9c/Mechanic<br>al-Design-of-a-Prosthetic-Human-Arm-and-its-Dynamic-Simulation.pf                                                                                                                                                                                                                                                                                                                                                                                                                                              |  |  |  |
| Source type                                               | Journal article                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |  |  |  |
| Keywords                                                  | Biomechanics Upper limb Prosthetic arm Prosthetic design                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |  |  |  |
| Summary of key<br>points + notes<br>(include methodology) | <ul> <li>Include shoulder and 7DoF</li> <li>Shoulder disarticulation</li> <li>technical limitations of the device, discomfort, appearance and lack of user training are reasons for abandonment</li> <li>The MPL [6] is the result of a 6 years program that was sponsored by the</li> <li>Advance Research Projects Agency of USA. It allows patients with different amputation levels to use it. The upper arm is composed by the shoulder with two actuators, a humeral rotator, elbow and the battery. Its main features are 26° of freedom (including the hand), 17 motors, and a total mass of 4.8 kg with battery and a payload of 155 N with the static wrist.</li> <li>Cad designed in solidworks</li> </ul> |  |  |  |
| Research<br>Question/Problem/<br>Need                     | The objective of this design is to create an anthropomorphic, functional, and low cost prosthesis. Mimic kinematics of normal arm                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |  |  |  |



# Article #17 Notes: CONTROL SYSTEM FOR A GRASPING DEVICE - EP 2 642 953 B1 (Patent)

| Source Title                                              | CONTROL SYSTEM FOR A GRASPING DEVICE - EP 2 642 953 B1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |  |  |  |  |
|-----------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|--|
| Source citation (APA                                      | Dalley, S. A., Varol, H. A., & Goldfarb, M. (2016). Control system                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |  |  |  |  |
| Format)                                                   | for a grasping device (European Union Patent No.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |  |  |  |  |
|                                                           | EP2642953B1).                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |  |  |  |  |
|                                                           | https://patents.google.com/patent/EP2642953B1/en?oq=EP                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |  |  |  |  |
|                                                           | <u>2642953B1</u>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |  |  |  |  |
| Original URL                                              | https://patents.google.com/patent/EP2642953B1/en?oq=EP2642953<br>B1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |  |  |  |  |
| Source type                                               | patent                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |  |  |  |  |
| Keywords                                                  | Grasping device, control system, mechanical devices                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |  |  |  |  |
| Summary of key<br>points + notes<br>(include methodology) | <ul> <li>Embodiments of the invention concern control systems for grasping devices. In accordance with the invention, a method for operating a grasping device using a plurality of parallel, bi-directional state flow maps each defining a sequence of poses for a plurality of joints in the grasping device, as defined in independent claim 1, is provided.</li> <li>Preferred embodiments are defined in the dependent claims.</li> <li>Two versions: direct control and pattern recognition</li> <li>Two emg, one on biceps, one on triceps</li> <li>Has an opposable thumb</li> <li>7 poses, located in the table below</li> </ul> |  |  |  |  |
| Research<br>Question/Problem/<br>Need                     | How to create a grasping mechanical device with a control system and various DoFs.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |  |  |  |  |

#### Important Figures

Table 1. Average transition times of all subjects between different poses for the native hand\*.

| able 1. Average transition times of all subjects between different poses for the native hand*. |                 |                |                |                |                |                |                |                 |
|------------------------------------------------------------------------------------------------|-----------------|----------------|----------------|----------------|----------------|----------------|----------------|-----------------|
|                                                                                                |                 | Target Pose    |                |                |                |                |                |                 |
|                                                                                                |                 | Lateral        | Hook           | Point          | Reposit<br>ion | Opposit<br>ion | Tip            | Cyl/Sph<br>/Tri |
|                                                                                                | Lateral         |                | 0.81<br>(0.36) | 0.81<br>(0.36) | 0.79<br>(0.36) | 0.76<br>(0.50) | 0.78<br>(0.25) | 0.74<br>(0.21)  |
|                                                                                                | Hook            | 0.59<br>(0.12) |                | 0.69<br>(0.25) | 0.90<br>(0.65) | 0.67           | 0.80<br>(0.28) | 0.72<br>(0.19)  |
| ose                                                                                            | Point           | 0.72<br>(0.31) | 0.62<br>(0.15) | (0.20)         | 0.81           | 0.73           | 0.88<br>(0.26) | 0.82<br>(0.28)  |
| inal P                                                                                         | Repos.          | 0.76 (0.25)    | 0.72 (0.18)    | 0.86           | ()             | 0.65 (0.28)    | 0.82 (0.50)    | 0.86 (0.22)     |
| Orig                                                                                           | Oppos.          | 0.82 (0.30)    | 1.02<br>(0.48) | 1.06<br>(0.53) | 0.71<br>(0.19) |                | 0.89 (0.30)    | 0.97 (0.38)     |
|                                                                                                | Tip             | 0.77 (0.12)    | 0.94 (0.47)    | 0.90 (0.33)    | 0.96 (0.33)    | 0.71<br>(0.23) |                | 0.91 (0.39)     |
|                                                                                                | Cyl/Sph/<br>Tri | 0.85<br>(0.42) | 0.92<br>(0.33) | 0.86<br>(0.31) | 0.86<br>(0.27) | 0.72<br>(0.15) | 0.84<br>(0.24) |                 |

\*Standard deviations are displayed in parenthesis.

| 5  |      | Target Pose |         |        |        |                |                |        |                 |
|----|------|-------------|---------|--------|--------|----------------|----------------|--------|-----------------|
|    |      |             | Lateral | Hook   | Point  | Reposit<br>ion | Opposit<br>ion | Tip    | Cyl/Sph<br>/Tri |
|    |      | Lateral     |         | 1.20   | 1.32   | 1.37           | 2.02           | 2.43   | 2.70            |
| 10 |      | Laterai     |         | (0.63) | (0.53) | (0.21)         | (0.70)         | (0.68) | (0.69)          |
|    |      | Healt       | 0.67    |        | 0.89   | 1.05           | 1.60           | 2.03   | 2.50            |
|    |      | поок        | (0.14)  |        | (0.29) | (0.14)         | (0.39)         | (0.51) | (0.95)          |
| 15 | 6    | Deint       | 1.12    | 0.84   |        | 0.81           | 1.25           | 1.67   | 2.21            |
|    | os   | Point       | (0.35)  | (0.22) |        | (0.43)         | (0.36)         | (0.32) | (0.50)          |
|    | al F | Repos.      | 1.82    | 1.34   | 1.02   |                | 0.92           | 1.36   | 1.57            |
|    | gin  |             | (0.96)  | (0.36) | (0.31) |                | (0.51)         | (0.51) | (0.56)          |
| 20 | )rig | Onnos       | 1.84    | 1.79   | 1.38   | 0.75           |                | 1.11   | 1.47            |
|    | 0    | Oppos.      | (0.44)  | (0.56) | (0.43) | (0.26)         |                | (0.43) | (0.88)          |
|    |      | Tip         | 2.16    | 2.18   | 1.68   | 1.15           | 0.61           |        | 0.75            |
|    |      |             | (0.44)  | (0.56) | (0.38) | (0.44)         | (0.13)         |        | (0.10)          |
|    |      | Cyl/Sph/    | 2.40    | 2.46   | 1.97   | 1.40           | 0.88           | 0.85   |                 |
|    |      | Tri         | (0.40)  | (0.61) | (0.55) | (0.37)         | (0.17)         | (0.22) |                 |

Table 2. Average transition times of all subjects between different poses for multigrasp myoelectric control\*.



## Article #18 Notes: PROSTHETIC HAND SYSTEM -US 20200330246A1 (Patent)

| Source Title                                              | PROSTHETIC HAND SYSTEM - US 20200330246A1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
|-----------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Source citation (APA                                      | Tognetti, A., Donati, G., Bacchereti, M., Ferretti, L., Pellicci, G.,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| Format)                                                   | Vitetta, N., & Carbonaro, N. (2020). Prosthetic hand system                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
|                                                           | (United States Patent No. US20200330246A1).                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
|                                                           | https://patents.google.com/patent/US20200330246A1/en?o                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
|                                                           | <u>q=US+20200330246A1+</u>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| Original URL                                              | https://patents.google.com/patent/US20200330246A1/en?oq=US+20<br>200330246A1+                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| Source type                                               | patent                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| Keywords                                                  | Prosthetic hand system, mechanical finger                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| Summary of key<br>points + notes<br>(include methodology) | A prosthetic hand structure including at least one mechanical finger<br>having a metacarpal support and a proximal stiff link connected to<br>the metacarpal support by a proximal cylindrical joint. The<br>mechanical finger includes a transmission member connected to the<br>proximal stiff link. The transmission member includes a worm screw<br>integral to the proximal stiff link. The transmission member includes a<br>flexible rack having a first end portion, pivotally connected to the<br>metacarpal support, and a second end portion arranged to engage<br>with the threaded profile of the worm screw at an engagement zone<br>of the flexible rack. The structure also includes an actuator mounted<br>to the mechanical finger and to actuate the worm screw, causing it to<br>rotate about its rotation axis, in such a way that, when the actuator<br>moves the worm screw, the mechanical finger extends or flexes.<br>• Utilizes a screw-rack system for the joints in the fingers and<br>hand<br>• EMG control from muscles as well |
| Research<br>Question/Problem/                             | How to develop and create a prosthetic hand system that utilizes mechanical fingers                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |



#### Tran 47

|                                  | Fig. 12C                                                                                                                                                                                                   |
|----------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                                  | Fig. 12F                                                                                                                                                                                                   |
|                                  | Fig. 12D                                                                                                                                                                                                   |
|                                  | Images of the multiple grips for the prosthesis                                                                                                                                                            |
| VOCAB: (w/definition)            | proximal cylindrical joint - Cylindrical joints constrain two bodies to a single axis while allowing them to rotate about and slide along that axis<br>Worm screw - a threaded rod with one or more screws |
| Cited references to follow up on | n/a                                                                                                                                                                                                        |
| Follow up Questions              | Is there any way to utilize the screw-rack system for underactuated fingers in the prosthesis? Is there a way to 3D print this with polymers or carbon fiber instead of metal?                             |