Engineering Need

Today, many prosthetic options are too expensive for the majority of individuals to obtain, causing a lowered quality of life for millions of amputees around the world. For children with a limb difference, it is even harder to obtain functional prostheses, as the child outgrows the limb too quickly, thus, new prostheses are needed every 12-18 months.

Engineering Goal

In order to combat the price barrier surrounding advanced prostheses, a modular myoelectric prosthesis model was created.

Background

- Prevalent prosthesis types: passive, body powered, myoelectric, and hybrid (Smail et al., 2021)
- Common materials: silicone, carbon fiber, polymers, aluminum, and titanium (Mota, 2017)
- Few are pursuing modular prosthetics in the field
- Main issues: heavy, hot, rigid, and bulky (Smail et al., 2021)
- A Backyard Brains (neuroscience company) product, "The Claw," will be the subject model
- "The Claw" contains electrodes, an Arduino-microcontroller, and a plastic claw which can be controlled by the user (The Claw, n.d.)
- Electrodes sense muscle contractions and relay the EMG signal (electromyography signal/electrical signal from the brain to the muscle) to the Arduino
- The Arduino, coded in C++, takes the signal to control a servo motor which rotates to move the plastic claw

Development of a Modular Below-Elbow Prosthesis with Bidirectional Signaling for Children

Travis Tran, Massachusetts Academy of Math and Science Advisor: Dr. Kevin Crowthers, Ph.D.

A modular below-elbow prosthesis with bidirectional signaling is attainable and will allow children to grow up with and utilize prostheses better.

Design Process

Prototype 1					
Functionality					
Attempt	Time to Stack 10 Blocks (s)	Clothespins Hung in 2 Minutes	Door Open-Closes in 2 Minutes		
1	31.32	26	24		
2	28.55	30	27		
3	26.26	32	28		
Average	28.71	29.33333333	26.33333333		
	Comfort	Durability			
	Weight: 233g	Everyday Use: okay			
	Rigid Points: 4	Stress-test: 20MPa			

Results

- Functionality the similar to Zhu et a' Modularity – fund
- tested at differe Durability – stress and everyday deg • Comfort – rigid
- weight test Cost-effectiven
 - aggregate c

)	Prototype 2					
ree trials	Functionality					
ıl. (2022)				Door		
ctionality		Time to Stack	Clothespins Hung in	Open-Closes		
nt sizes	Attempt	10 Blocks (s)	2 Minutes	in 2 Minutes		
analysis	1	26.88	33	34		
aradation	2	21.55	35	38		
lity and	3	17.22	38	44		
to	Average	21.88333333	35.33333333	38.66666667		
15		Comfort	Durability			
ness —		Weight: 303g	Everyday Use: good			
osts		Rigid Points: 1	Stress-test: 20MPa			

Prototype 2

Analysis

Statistical significance between the first and second prototypes as well as between the baseline and both prototypes (p<0.05 for all cases)

Through the design matrices, the second prototype was determined to be the best Performs at 42% of the rate a normal human arm would

eria (Rank)	Prototype 2	Reasoning
ety - how safe the user feels when g the prosthesis; how well the user s the prosthesis (10)	9	Very safe, almost no potential sources of harm
ctionality - determined from tionality methodology (9)	7	Performed in the trials fairly well
ularity - determined from modularity nodology (9)	7	Fingers are modular, but the socket is not, performed similarly when fingers/socket shortened
nfort - determined from comfort nodology (7)	6	Decent, but the design is a little bulky
ability - determined from durability nodology (7)	8	20MPa is fairly durable compared to the baseline
t-effectiveness - determined from -effectiveness methodology (6)	9	3D printing out of plastic is much cheaper than buying a whole prosthesis system
trol - how well the user can ipulate the prosthesis to do desired ons (8)	6	Controlling the prosthesis had a learning curve and was hard to control at times, especially for fine motor movements
sory Feedback - how well the thesis conveys the sense of touch e user (8)	6	Vibration from motor was the only sensory feedback
I (Max 640)	464	

Discussion

A functional, modular, durable, comfortable, and cost-effective prosthesis was prototyped In the field, this project introduces a new, modular myoelectric

• Functionality trials inspired by by Zhu et al. (2022)

• Future work: implementing better sensory feedback, other materials

• Limitations: quality of the 3D printing and quality of the Arduino parts

Artificial arm, Roehampton, England, 1964 | Science Museum Group Collection. (n.d.). Retrieved December 12, 2022, from https://collection.sciencemuseumgroup.org.uk/objects/co476751/artificial-arm-roehampton-england-1964-artificial-arm

Bebionic Hand EQD | The most lifelike prosthetic hand. (n.d.). Retrieved December 12, 2022, from https://www.ottobock.comundefined Mota, A. (2017). *Materials of Prosthetic Limbs*. California State Polytechnic University, Pomona, Mechanical Engineering Department.

https://scholarworks.calstate.edu/downloads/h128ng975/ Pons, J. L., Rocon, E., Ceres, R., Reynaerts, D., Saro, B., Levin, S., & Van Moorleghem, W. (2004). The MANUS-HAND Dextrous Robotics Upper Limb Prosthesis: Mechanical and Manipulation Aspects. Autonomous Robots, 16(2), 143-163.

https://doi.org/10.1023/B:AURO.0000016862.38337.f1 Prosthetic Hand | 3D CAD Model Library | GrabCAD. (n.d.). Retrieved December 12, 2022, from https://grabcad.com/library/prosthetic-hand-1 Rajput, M. (2021, December 28). 3D printing composite materials: An introductory guide - 3ERP. Rapid Prototyping & Low Volume Production. https://www.3erp.com/blog/3d-printing-composite-materials-an-introductory-guide/ Sang, Y., Li, X., Gan, Y., Su, D., & Luo, Y. (2014). A novel socket design for upper-limb prosthesis. In *International Journal of Applied*

Electromagnetics and Mechanics, Vol. 45, p. 886. https://doi.org/10.3233/JAE-141920 Silicone Arm Liner with CVD coating | Liner | Suspension | Upper Limb Prosthetics | Prosthetics | Ottobock US Shop. (n.d.). Retrieved February 7 2023, from https://shop.ottobock.us/Prosthetics/Upper-Limb-Prosthetics/Suspension/Liner/Silicone-Arm-Liner-with-CVD-coating/p/14Y5 Smail, L. C., Neal, C., Wilkins, C., & Packham, T. L. (2021). Comfort and function remain key factors in upper limb prosthetic abandonment: Findings of a scoping review. Disability and Rehabilitation: Assistive Technology, 16(8), 821–830. https://doi.org/10.1080/17483107.2020.1738567

The Claw. (n.d.). Retrieved October 23, 2022, from https://backyardbrains.com/products/clawBundle Upper Extremity Prosthetics—Allen Orthotics & Prosthetics | Midland, Texas. (n.d.). Retrieved December 12, 2022, from https://allenoandp.com/prosthetics/upper-extremity-prosthetics

Zhu, Z., Li, J., Boyd, W. J., Martinez-Luna, C., Dai, C., Wang, H., Wang, H., Huang, X., Farrell, T. R., & Clancy, E. A. (2022). Myoelectric Control Performance of Two Degree of Freedom Hand-Wrist Prosthesis by Able-Bodied and Limb-Absent Subjects. *IEEE Transactions on Neural* Systems and Rehabilitation Engineering, 30, 893-904. https://doi.org/10.1109/TNSRE.2022.3163149